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Potential outcomes

Treatment 1
↔

Treatment 0

A = 1 A = 0

• Take an eligible patient population

, and imagine two parallel worlds: in
one they are all assigned treatment 1 and in the other treatment 0.
• Y 1 and Y 0 denote the potential outcomes in the two parallel worlds.
• In fact patients are randomised to one group or the other. The
randomised group is denoted A and the factual outcome is denoted Y .
• Consistency: Y = Y 1 if A = 1 and Y = Y 0 if A = 0.
• Exchangeability: Y 1 and Y 0 are both independent of A.
• This ensures e.g. E(Y 1) = E(Y |A = 1) and E(Y 0) = E(Y |A = 0).
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‘Treatment policy’ estimands

• The causal contrast of interest in an RCT is often a contrast between
some summary of the distributions of Y 1 and Y 0.

— a = 1, 0 here denotes allocation to treatment, and so this is a
‘treatment policy’ (or intention-to-treat) estimand.

— Other types of estimands exist (‘dealing’ with intercurrent events
somehow) but are not the focus of today’s workshop.

• Often the summary is simply the mean: E(Y 1) vs. E(Y 0).

— But of course not always, e.g. with time-to-event outcomes.

• Several contrasts are possible, e.g. mean difference E(Y 1)− E(Y 0),
mean ratio E(Y 1)/E(Y 0), (for binary outcomes) odds ratio

E(Y 1)/{1− E(Y 1)}
E(Y 0)/{1− E(Y 0)} , · · ·

• These are all marginal causal contrasts.
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Baseline covariates

• Randomisation ensures that these causal contrasts correspond to
statistical contrasts, e.g.

E(Y 1)− E(Y 0) = E(Y |A = 1)− E(Y |A = 0).

• Exchangeability (A ⊥⊥ Y a, a = 1, 0) is rarely plausible in observational
studies. Instead, we typically rely on conditional exchangeability

A ⊥⊥ Y a|W , a = 1, 0

given a set of baseline covariates (confounders) W .
• W play a vital role in observational studies: controlling for
confounding.
• In RCTs, where confounding is not an issue, it is perhaps not surprising
that W have traditionally received less attention.
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Three ways of using baseline covariates

Baseline covariates are still used in RCTs too, however, in (at least) three
ways:

1. First a description of the distribution of baseline covariates by arm is
almost always given.

— Used to illustrate ‘successful’ randomisation etc.
— This is not our focus today.

2. Baseline covariates W can be used in the definition of the causal
estimand of interest.

— e.g. subgroup analyses.

3. They can also be used in the analysis even when they don’t appear in
the estimand.

— e.g. to increase efficiency / power.
— Some confusion persists over this issue.
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Conditioning vs. adjusting

• One partial explanation for the confusion is that traditionally
conditional and adjusted are used interchangeably, likewise marginal and
unadjusted.

• A useful suggestion is that marginal/conditional is used to describe the
estimand of interest and unadjusted/adjusted for the analysis performed.
• It is perfectly possible to obtain an adjusted estimator of a marginal
estimand, for example.

— See Kelly’s and Alex’s talks.

• Adjusted estimators of marginal estimands are almost always more
precise than unadjusted estimators.

— This is the case for binary and time-to-event outcomes, not just for
continuous outcomes as is sometimes said.

— Confusion enters when people compare the SE of an (adjusted)
estimator of a conditional estimand with the SE of an unadjusted
estimator of a marginal estimand: apple vs. orange.
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Heterogeneity and non-collapsibility

• Another important distinction concerns heterogeneity.

• A focus on conditional estimands can mean e.g. separately estimating

φF = E(Y 1 − Y 0|Sex = F) and φM = E(Y 1 − Y 0|Sex = M)

— What is the treatment effect in women? What is it in men? (Are
they similar?)

• It’s also possible, however, to have a single conditional treatment effect

φ = E(Y 1 − Y 0|W )

assumed not to vary with W .

— This is the default implied by a regression model.

• Depending on the effect measure, a conditional estimand assumed
homogeneous across levels of W may or may not be equal to the
corresponding marginal estimand.

— This is known as non-collapsibility and is certainly a source of much
confusion.
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Non-collapsibility

• To explain non-collapsibility, consider a binary outcome Y , a binary
treatment A and (for simplicity) a single continuous baseline covariate W .

• A GLM for Y given A and W with link function f , assuming no effect
modification, is given by:

Pr(Y = 1|A = a,W ) = E(Y |A = a,W ) = f −1(η + γW + νa)

• By randomisation, ν can be given a causal interpretation:

Pr(Y a = 1|W ) = E(Y a|W ) = f −1(η + γW + νa)

• Consider instead the marginal ‘model’:

E(Y |A = a) = f −1(α+ βa)

• By randomisation, β too can be given a causal interpretation:

E(Y a) = f −1(α+ βa)

• Depending on f , β and ν may not be equal: non-collapsibility.
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Why?

• The essence of the GLM (for a given link function f ) when used in this
context is that it specifies how E(Y 0|·) maps to E(Y 1|·).

• Specifically, E(Y 0|·) maps to E(Y 1|·) via the function g with
parameter θ where

gθ(p) = f −1 {f (p) + θ}

• Consider what happens if we apply gν (g with the conditional
parameter) to the marginal E(Y 0):

gν

{
E(Y 0)

}
= gν

[
E

{
E(Y 0|W )

}]
• IF gν(p) is a linear function of p then we can interchange gν and E:

gν

{
E(Y 0)

}
= E

[
gν

{
E(Y 0|W )

}]
= E

{
E(Y 1|W )

}
= E(Y 1)

• Thus IF g·(p) is a linear function of p then β = ν.
• But for some link functions f , e.g. logit, g·(p) is non-linear.
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g·(p) for common link functions
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Arguments made for marginal estimands

• A single number with a simple(?) interpretation.

— Yes, but not to be used as an argument for an unadjusted analysis.
• Useful for making blanket policy decisions e.g. should this drug
be approved?

— Yes, but only if the population to which the decision is relevant is
similar to the RCT population.

• Less risk that model misspecification invalidates the analysis.

— Sometimes used in defense of an unadjusted analysis; also used in
defense of an adjusted analysis of a marginal estimand.

— Either way, these arguments are doubtful. Randomisation often
gives protection even when it may appear that we are relying on
additional assumptions in order to bring in W : see all remaining talks.

• Eliminates concerns over multiple testing / ‘gaming’ the
analysis.

— Possibly, but with modern approaches, pre-specification is feasible
even when using W : see all remaining talks.
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Arguments made for conditional estimands

• A more comprehensive understanding of treatment effect, e.g.
groups for whom treatment may be especially beneficial.

— Yes, but for this, the conditional estimands must be allowed to differ
(heterogeneity).

• Estimators of conditional estimands are more precise.

— This is an argument for adjusted analyses; not (necessarily) for
conditional estimands.

• Conditional estimands are more relevant to an individual and
more transportable to different populations.

— Yes. This is obviously the case if there is heterogeneity and the
heterogeneity is modelled.

— It even tends to be the case if the conditional effects are wrongly
assumed homogeneous.

— The choice of effect measure can be important when considering
transportability, however.

— See work by Anders Huitfeldt.
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More on causal inference, collapsibility, etc
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