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one they are all assigned treatment 1 and in the other treatment O.
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® Take an eligible patient population, and imagine two parallel worlds: in
one they are all assigned treatment 1 and in the other treatment O.

® Y1 and Y? denote the potential outcomes in the two parallel worlds.
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® Take an eligible patient population, and imagine two parallel worlds: in
one they are all assigned treatment 1 and in the other treatment O.

® Y1 and Y? denote the potential outcomes in the two parallel worlds.

® |n fact patients are randomised to one group or the other. The
randomised group is denoted A and the factual outcome is denoted Y.
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® Take an eligible patient population, and imagine two parallel worlds: in
one they are all assigned treatment 1 and in the other treatment O.
® Y1 and Y? denote the potential outcomes in the two parallel worlds.

® |n fact patients are randomised to one group or the other. The
randomised group is denoted A and the factual outcome is denoted Y.

e Consistency: Y=Y'ifA=1land Y =Y"if A=0.
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® Take an eligible patient population, and imagine two parallel worlds: in
one they are all assigned treatment 1 and in the other treatment O.

® Y1 and Y? denote the potential outcomes in the two parallel worlds.

® |n fact patients are randomised to one group or the other. The
randomised group is denoted A and the factual outcome is denoted Y.

e Consistency: Y=Y'ifA=1land Y =Y"if A=0.
® Exchangeability: Y! and Y are both independent of A.
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® Take an eligible patient population, and imagine two parallel worlds: in
one they are all assigned treatment 1 and in the other treatment O.

® Y1 and Y? denote the potential outcomes in the two parallel worlds.

® |n fact patients are randomised to one group or the other. The
randomised group is denoted A and the factual outcome is denoted Y.

e Consistency: Y=Y'ifA=1land Y =Y"if A=0.
® Exchangeability: Y! and Y are both independent of A.
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® Take an eligible patient population, and imagine two parallel worlds: in
one they are all assigned treatment 1 and in the other treatment O.

® Y1 and Y? denote the potential outcomes in the two parallel worlds.

® |n fact patients are randomised to one group or the other. The
randomised group is denoted A and the factual outcome is denoted Y.

e Consistency: Y=Y'ifA=1land Y =Y"if A=0.
® Exchangeability: Y! and Y are both independent of A.
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® Take an eligible patient population, and imagine two parallel worlds: in

one they are all assigned treatment 1 and in the other treatment O.

® Y1 and Y? denote the potential outcomes in the two parallel worlds.

® |n fact patients are randomised to one group or the other. The
randomised group is denoted A and the factual outcome is denoted Y.

e Consistency: Y=Y'ifA=1land Y =Y"if A=0.
® Exchangeability: Y! and Y are both independent of A.



CARDIFF )
Potential outcomes

0B0600600060000000

pa0e0a0aE0000000 @H@o@oméﬁéb”éeo"éé’oo@@o@
WL L 1Ll

oo o oo o0 P @@@@@@@@@@

® Take an eligible patient population, and imagine two parallel worlds: in
one they are all assigned treatment 1 and in the other treatment O.

® Y1 and Y? denote the potential outcomes in the two parallel worlds.

® |n fact patients are randomised to one group or the other. The
randomised group is denoted A and the factual outcome is denoted Y.

e Consistency: Y=Y'ifA=1land Y =Y"if A=0.
® Exchangeability: Y! and Y are both independent of A.
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® Take an eligible patient population, and imagine two parallel worlds: in
one they are all assigned treatment 1 and in the other treatment O.

® Y1 and Y? denote the potential outcomes in the two parallel worlds.

® |n fact patients are randomised to one group or the other. The
randomised group is denoted A and the factual outcome is denoted Y.

e Consistency: Y=Y'ifA=1land Y =Y"if A=0.
® Exchangeability: Y! and Y are both independent of A.
® This ensures e.g. E(Y?) = E(Y|A =1) and E(Y°) = E(Y|A = 0).
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— Other types of estimands exist (‘dealing’ with intercurrent events
somehow) but are not the focus of today's workshop.
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® The causal contrast of interest in an RCT is often a contrast between
some summary of the distributions of Y and Y?°.

— a = 1,0 here denotes allocation to treatment, and so this is a
‘treatment policy’ (or intention-to-treat) estimand.

— Other types of estimands exist (‘dealing’ with intercurrent events
somehow) but are not the focus of today's workshop.

® Often the summary is simply the mean: E(Y?) vs. E(Y?).
— But of course not always, e.g. with time-to-event outcomes.

® Several contrasts are possible, e.g. mean difference E(Y?!) — E(Y?),
mean ratio E(Y?!)/IE(Y?), (for binary outcomes) odds ratio

E(YN)/{1 - (Y}
E(YO)/{T-E(VO}
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® The causal contrast of interest in an RCT is often a contrast between
some summary of the distributions of Y and Y?°.

— a = 1,0 here denotes allocation to treatment, and so this is a
‘treatment policy’ (or intention-to-treat) estimand.

— Other types of estimands exist (‘dealing’ with intercurrent events
somehow) but are not the focus of today's workshop.

® Often the summary is simply the mean: E(Y?) vs. E(Y?).
— But of course not always, e.g. with time-to-event outcomes.

® Several contrasts are possible, e.g. mean difference E(Y?!) — E(Y?),
mean ratio E(Y?!)/IE(Y?), (for binary outcomes) odds ratio

E(YN)/{1 - (Y}
E(YO)/{T-E(VO}

® These are all marginal causal contrasts.
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statistical contrasts, e.g.

E(YH) -E(Y?) =E(Y|A=1) - E(Y|A =0).

® Exchangeability (A 1L Y2, a =1,0) is rarely plausible in observational
studies. Instead, we typically rely on conditional exchangeability

AL YW, a=1,0

given a set of baseline covariates (confounders) W.



CARDIFF . .
UNIVERSITY Basehne COVarlateS

PRIFYSGOL

C¥RDYD

® Randomisation ensures that these causal contrasts correspond to
statistical contrasts, e.g.

E(YH) -E(Y?) =E(Y|A=1) - E(Y|A =0).

® Exchangeability (A 1L Y2, a =1,0) is rarely plausible in observational
studies. Instead, we typically rely on conditional exchangeability

AL YW, a=1,0

given a set of baseline covariates (confounders) W.
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® Randomisation ensures that these causal contrasts correspond to
statistical contrasts, e.g.

E(YH) -E(Y?) =E(Y|A=1) - E(Y|A =0).

® Exchangeability (A 1L Y2, a =1,0) is rarely plausible in observational
studies. Instead, we typically rely on conditional exchangeability

AL YW, a=1,0

given a set of baseline covariates (confounders) W.

® W play a vital role in observational studies: controlling for
confounding.

® |n RCTs, where confounding is not an issue, it is perhaps not surprising
that W have traditionally received less attention.
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2. Baseline covariates W can be used in the definition of the causal
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3. They can also be used in the analysis even when they don't appear in
the estimand.

— e.g. to increase efficiency / power.
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Baseline covariates are still used in RCTs too, however, in (at least) three
ways:

1. First a description of the distribution of baseline covariates by arm is
almost always given.

— Used to illustrate ‘successful’ randomisation etc.
— This is not our focus today.

2. Baseline covariates W can be used in the definition of the causal
estimand of interest.

— e.g. subgroup analyses.

3. They can also be used in the analysis even when they don't appear in
the estimand.

— e.g. to increase efficiency / power.
— Some confusion persists over this issue.
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® |t is perfectly possible to obtain an adjusted estimator of a marginal
estimand, for example.
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— See Kelly's and Alex’s talks.
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conditional and adjusted are used interchangeably, likewise marginal and
unadjusted.

e A useful suggestion is that marginal/conditional is used to describe the
estimand of interest and unadjusted/adjusted for the analysis performed.

® |t is perfectly possible to obtain an adjusted estimator of a marginal
estimand, for example.

— See Kelly's and Alex’s talks.

® Adjusted estimators of marginal estimands are almost always more
precise than unadjusted estimators.

— This is the case for binary and time-to-event outcomes, not just for
continuous outcomes as is sometimes said.
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® One partial explanation for the confusion is that traditionally
conditional and adjusted are used interchangeably, likewise marginal and
unadjusted.

e A useful suggestion is that marginal/conditional is used to describe the
estimand of interest and unadjusted/adjusted for the analysis performed.

® |t is perfectly possible to obtain an adjusted estimator of a marginal
estimand, for example.

— See Kelly's and Alex’s talks.

® Adjusted estimators of marginal estimands are almost always more
precise than unadjusted estimators.

— This is the case for binary and time-to-event outcomes, not just for
continuous outcomes as is sometimes said.

— Confusion enters when people compare the SE of an (adjusted)
estimator of a conditional estimand with the SE of an unadjusted
estimator of a marginal estimand: apple vs. orange.
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— What is the treatment effect in women? What is it in men? (Are
they similar?)

® |t's also possible, however, to have a single conditional treatment effect

6 =TB(Y! = Y’|W)
assumed not to vary with W.

— This is the default implied by a regression model.
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® Another important distinction concerns heterogeneity.
® A focus on conditional estimands can mean e.g. separately estimating
dF = B(Y! — Y°Sex = F) and ¢ = E(Y! — Y°|Sex = M)

— What is the treatment effect in women? What is it in men? (Are
they similar?)

® |t's also possible, however, to have a single conditional treatment effect
é=TE(Y - Y°|W)
assumed not to vary with W.
— This is the default implied by a regression model.

® Depending on the effect measure, a conditional estimand assumed
homogeneous across levels of W may or may not be equal to the
corresponding marginal estimand.
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® Another important distinction concerns heterogeneity.
® A focus on conditional estimands can mean e.g. separately estimating
dF = B(Y! — Y°Sex = F) and ¢ = E(Y! — Y°|Sex = M)
— What is the treatment effect in women? What is it in men? (Are
they similar?)
® |t's also possible, however, to have a single conditional treatment effect
6 =TB(Y! = Y’|W)
assumed not to vary with W.
— This is the default implied by a regression model.

® Depending on the effect measure, a conditional estimand assumed
homogeneous across levels of W may or may not be equal to the
corresponding marginal estimand.

— This is known as non-collapsibility and is certainly a source of much
confusion.
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® To explain non-collapsibility, consider a binary outcome Y, a binary
treatment A and (for simplicity) a single continuous baseline covariate W.

e A GLM for Y given A and W with link function f, assuming no effect
modification, is given by:

Pr(Y=1A=a, W) =E(Y|A=a, W) =f(n+yW +ra)
® By randomisation, © can be given a causal interpretation:
Pr(Y? =1|W) = B(Y?|W) = fY(n + YW + va)
e Consider instead the marginal ‘model:
E(Y|A=a)=f " a4+ 3a)
® By randomisation, [ too can be given a causal interpretation:
E(Y?) = fYa+ Ba)

® Depending on f, 3 and v may not be equal: non-collapsibility.
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parameter 6 where

g(p) = f+{f(p) + 6}
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® The essence of the GLM (for a given link function f) when used in this
context is that it specifies how E(Y°|-) maps to E(Y!|-).

* Specifically, E(Y°|-) maps to E(Y*|-) via the function g with
parameter 6 where

g(p) = f+{f(p) + 6}

¢ Consider what happens if we apply g, (g with the conditional
parameter) to the marginal E(Y?):

g {E(Y°)} =g [E{E(Y°|W)}]
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® The essence of the GLM (for a given link function f) when used in this
context is that it specifies how E(Y°|-) maps to E(Y!|-).

* Specifically, E(Y°|-) maps to E(Y*|-) via the function g with
parameter 6 where

g(p) = f+{f(p) + 6}

¢ Consider what happens if we apply g, (g with the conditional
parameter) to the marginal E(Y?):

& {E(Y")} = & [E{E(V*|W)}]
e IF g,(p) is a linear function of p then we can interchange g, and IE:

g {E(Y")} = E[g {E(Y|W)}] = E{E(Y'|W)} = E(Y")
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® The essence of the GLM (for a given link function f) when used in this
context is that it specifies how E(Y°|-) maps to E(Y!|-).

* Specifically, E(Y°|-) maps to E(Y*|-) via the function g with
parameter 6 where

g(p) = f+{f(p) + 6}

¢ Consider what happens if we apply g, (g with the conditional
parameter) to the marginal E(Y?):

g {E(Y°)} =g [E{E(Y°IW)}]
e IF g,(p) is a linear function of p then we can interchange g, and IE:
g {B(Y)} = E g {E(°|W)}] = E{B(Y W)} = E(Y)

® Thus IF g.(p) is a linear function of p then § = v.
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® The essence of the GLM (for a given link function f) when used in this
context is that it specifies how E(Y°|-) maps to E(Y!|-).

* Specifically, E(Y°|-) maps to E(Y*|-) via the function g with
parameter 6 where

g(p) = f+{f(p) + 6}

¢ Consider what happens if we apply g, (g with the conditional
parameter) to the marginal E(Y?):

g {E(Y°)} =g [E{E(Y°IW)}]
e IF g,(p) is a linear function of p then we can interchange g, and IE:
g {B(Y)} = E g {E(°|W)}] = E{B(Y W)} = E(Y)

® Thus IF g.(p) is a linear function of p then § = v.
® But for some link functions f, e.g. logit, g.(p) is non-linear.
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0 The choice between marginal and conditional estimands
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® Less risk that model misspecification invalidates the analysis.
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® Less risk that model misspecification invalidates the analysis.

— Sometimes used in defense of an unadjusted analysis; also used in
defense of an adjusted analysis of a marginal estimand.
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— Yes, but not to be used as an argument for an unadjusted analysis.

e Useful for making blanket policy decisions e.g. should this drug
be approved?

— Yes, but only if the population to which the decision is relevant is
similar to the RCT population.

® Less risk that model misspecification invalidates the analysis.

— Sometimes used in defense of an unadjusted analysis; also used in
defense of an adjusted analysis of a marginal estimand.

— Either way, these arguments are doubtful. Randomisation often
gives protection even when it may appear that we are relying on
additional assumptions in order to bring in W: see all remaining talks.
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® A single number with a simple(?) interpretation.

— Yes, but not to be used as an argument for an unadjusted analysis.
e Useful for making blanket policy decisions e.g. should this drug
be approved?

— Yes, but only if the population to which the decision is relevant is

similar to the RCT population.
® Less risk that model misspecification invalidates the analysis.

— Sometimes used in defense of an unadjusted analysis; also used in

defense of an adjusted analysis of a marginal estimand.

— Either way, these arguments are doubtful. Randomisation often

gives protection even when it may appear that we are relying on
additional assumptions in order to bring in W: see all remaining talks.

e Eliminates concerns over multiple testing / ‘gaming’ the
analysis.
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® A single number with a simple(?) interpretation.

— Yes, but not to be used as an argument for an unadjusted analysis.
e Useful for making blanket policy decisions e.g. should this drug
be approved?

— Yes, but only if the population to which the decision is relevant is

similar to the RCT population.
® Less risk that model misspecification invalidates the analysis.

— Sometimes used in defense of an unadjusted analysis; also used in
defense of an adjusted analysis of a marginal estimand.

— Either way, these arguments are doubtful. Randomisation often
gives protection even when it may appear that we are relying on
additional assumptions in order to bring in W: see all remaining talks.

e Eliminates concerns over multiple testing / ‘gaming’ the
analysis.

— Possibly, but with modern approaches, pre-specification is feasible
even when using W: see all remaining talks.
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heterogeneity is modelled.

— It even tends to be the case if the conditional effects are wrongly
assumed homogeneous.
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— It even tends to be the case if the conditional effects are wrongly
assumed homogeneous.

— The choice of effect measure can be important when considering
transportability, however.
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® A more comprehensive understanding of treatment effect, e.g.
groups for whom treatment may be especially beneficial.

— Yes, but for this, the conditional estimands must be allowed to differ
(heterogeneity).

¢ Estimators of conditional estimands are more precise.

— This is an argument for adjusted analyses; not (necessarily) for
conditional estimands.

¢ Conditional estimands are more relevant to an individual and
more transportable to different populations.

— Yes. This is obviously the case if there is heterogeneity and the
heterogeneity is modelled.

— It even tends to be the case if the conditional effects are wrongly
assumed homogeneous.

— The choice of effect measure can be important when considering
transportability, however.

— See work by Anders Huitfeldt.
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Noncollapsibility, confounding, and sparse-data bias.
Part 1: The oddities of odds
Sander Greenland 2 =
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should researchers make of persistent controversies about the odds
ratio?
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@ . Making apples from oranges: Comparing noncollapsible
On the collapsibility of measures of effect - effect estimators and their standard errors after adjustment
in the counterfactual causal framework for different covariate sets©
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