

A gentle introduction to marginal and conditional estimands in causal inference

Rhian Daniel, Cardiff University Workshop on targeted learning in RCTs Ghent University, 29th June 2021

Outline

The potential outcomes framework and RCTs

- 2 Treatment policy estimands
- **3** The role of baseline covariates
- 4 Marginal/conditional vs. unadjusted/adjusted
- **5** Heterogeneity of conditional estimands
- 6 Non-collapsibility
- The choice between marginal and conditional estimands
- 8 For more...

Outline

1 The potential outcomes framework and RCTs

- 2 Treatment policy estimands
- **3** The role of baseline covariates
- 4 Marginal/conditional vs. unadjusted/adjusted
- **5** Heterogeneity of conditional estimands
- 6 Non-collapsibility
- The choice between marginal and conditional estimands
- B For more...

Potential outcomes

0000000000000000000000

• Take an eligible patient population

Potential outcomes

Potential outcomes

• Take an eligible patient population, and imagine two parallel worlds: in one they are all assigned treatment 1 and in the other treatment 0.

• Y^1 and Y^0 denote the *potential outcomes* in the two parallel worlds.

- Y^1 and Y^0 denote the *potential outcomes* in the two parallel worlds.
- In fact patients are randomised to one group or the other. The randomised group is denoted *A* and the factual outcome is denoted *Y*.

- Y^1 and Y^0 denote the *potential outcomes* in the two parallel worlds.
- In fact patients are randomised to one group or the other. The randomised group is denoted *A* and the factual outcome is denoted *Y*.
- Consistency: $Y = Y^1$ if A = 1 and $Y = Y^0$ if A = 0.

- Y^1 and Y^0 denote the *potential outcomes* in the two parallel worlds.
- In fact patients are randomised to one group or the other. The randomised group is denoted A and the factual outcome is denoted Y.
- Consistency: $Y = Y^1$ if A = 1 and $Y = Y^0$ if A = 0.
- Exchangeability: Y^1 and Y^0 are both independent of A.

- Y^1 and Y^0 denote the *potential outcomes* in the two parallel worlds.
- In fact patients are randomised to one group or the other. The randomised group is denoted *A* and the factual outcome is denoted *Y*.
- Consistency: $Y = Y^1$ if A = 1 and $Y = Y^0$ if A = 0.
- Exchangeability: Y^1 and Y^0 are both independent of A.

- Y^1 and Y^0 denote the *potential outcomes* in the two parallel worlds.
- In fact patients are randomised to one group or the other. The randomised group is denoted *A* and the factual outcome is denoted *Y*.
- Consistency: $Y = Y^1$ if A = 1 and $Y = Y^0$ if A = 0.
- Exchangeability: Y^1 and Y^0 are both independent of A.

- Y^1 and Y^0 denote the *potential outcomes* in the two parallel worlds.
- In fact patients are randomised to one group or the other. The randomised group is denoted *A* and the factual outcome is denoted *Y*.
- Consistency: $Y = Y^1$ if A = 1 and $Y = Y^0$ if A = 0.
- Exchangeability: Y^1 and Y^0 are both independent of A.

- Y^1 and Y^0 denote the *potential outcomes* in the two parallel worlds.
- In fact patients are randomised to one group or the other. The randomised group is denoted *A* and the factual outcome is denoted *Y*.
- Consistency: $Y = Y^1$ if A = 1 and $Y = Y^0$ if A = 0.
- Exchangeability: Y^1 and Y^0 are both independent of A.

- Y^1 and Y^0 denote the *potential outcomes* in the two parallel worlds.
- In fact patients are randomised to one group or the other. The randomised group is denoted A and the factual outcome is denoted Y.
- Consistency: $Y = Y^1$ if A = 1 and $Y = Y^0$ if A = 0.
- Exchangeability: Y^1 and Y^0 are both independent of A.
- This ensures e.g. $\mathbb{E}(Y^1) = \mathbb{E}(Y|A=1)$ and $\mathbb{E}(Y^0) = \mathbb{E}(Y|A=0)$.

Outline

1 The potential outcomes framework and RCTs

2 Treatment policy estimands

- **3** The role of baseline covariates
- 4 Marginal/conditional vs. unadjusted/adjusted
- **5** Heterogeneity of conditional estimands
- 6 Non-collapsibility
- The choice between marginal and conditional estimands
- 8 For more...

• The causal contrast of interest in an RCT is often a contrast between some summary of the distributions of Y^1 and Y^0 .

- The causal contrast of interest in an RCT is often a contrast between some summary of the distributions of γ^1 and γ^0 .
 - a = 1,0 here denotes allocation to treatment, and so this is a 'treatment policy' (or intention-to-treat) estimand.

- The causal contrast of interest in an RCT is often a contrast between some summary of the distributions of Y^1 and Y^0 .
 - a = 1,0 here denotes allocation to treatment, and so this is a 'treatment policy' (or intention-to-treat) estimand.
 - Other types of estimands exist ('dealing' with intercurrent events somehow) but are not the focus of today's workshop.

- The causal contrast of interest in an RCT is often a contrast between some summary of the distributions of Y^1 and Y^0 .
 - a = 1,0 here denotes allocation to treatment, and so this is a 'treatment policy' (or intention-to-treat) estimand.
 - Other types of estimands exist ('dealing' with intercurrent events somehow) but are not the focus of today's workshop.
- Often the summary is simply the mean: $\mathbb{E}(Y^1)$ vs. $\mathbb{E}(Y^0)$.

- The causal contrast of interest in an RCT is often a contrast between some summary of the distributions of Y^1 and Y^0 .
 - a = 1,0 here denotes allocation to treatment, and so this is a 'treatment policy' (or intention-to-treat) estimand.
 - Other types of estimands exist ('dealing' with intercurrent events somehow) but are not the focus of today's workshop.
- Often the summary is simply the mean: $\mathbb{E}(Y^1)$ vs. $\mathbb{E}(Y^0)$.
 - $-\!\!-$ But of course not always, e.g. with time-to-event outcomes.

- The causal contrast of interest in an RCT is often a contrast between some summary of the distributions of Y^1 and Y^0 .
 - a = 1,0 here denotes allocation to treatment, and so this is a 'treatment policy' (or intention-to-treat) estimand.
 - Other types of estimands exist ('dealing' with intercurrent events somehow) but are not the focus of today's workshop.
- Often the summary is simply the mean: $\mathbb{E}(Y^1)$ vs. $\mathbb{E}(Y^0)$.
 - But of course not always, e.g. with time-to-event outcomes.
- Several contrasts are possible, e.g. mean difference $\mathbb{E}(\Upsilon^1) \mathbb{E}(\Upsilon^0)$, mean ratio $\mathbb{E}(\Upsilon^1)/\mathbb{E}(\Upsilon^0)$, (for binary outcomes) odds ratio

$$\frac{\mathbb{E}(\boldsymbol{Y}^1)/\{1-\mathbb{E}(\boldsymbol{Y}^1)\}}{\mathbb{E}(\boldsymbol{Y}^0)/\{1-\mathbb{E}(\boldsymbol{Y}^0)\}},\cdots$$

• The causal contrast of interest in an RCT is often a contrast between some summary of the distributions of Y^1 and Y^0 .

- a = 1,0 here denotes allocation to treatment, and so this is a 'treatment policy' (or intention-to-treat) estimand.
- Other types of estimands exist ('dealing' with intercurrent events somehow) but are not the focus of today's workshop.
- Often the summary is simply the mean: $\mathbb{E}(Y^1)$ vs. $\mathbb{E}(Y^0)$.
 - $-\!\!\!-$ But of course not always, e.g. with time-to-event outcomes.
- Several contrasts are possible, e.g. mean difference $\mathbb{E}(\Upsilon^1) \mathbb{E}(\Upsilon^0)$, mean ratio $\mathbb{E}(\Upsilon^1)/\mathbb{E}(\Upsilon^0)$, (for binary outcomes) odds ratio

$$\frac{\mathbb{E}(\boldsymbol{Y}^1)/\{1-\mathbb{E}(\boldsymbol{Y}^1)\}}{\mathbb{E}(\boldsymbol{Y}^0)/\{1-\mathbb{E}(\boldsymbol{Y}^0)\}},\cdots$$

• These are all marginal causal contrasts.

Outline

The potential outcomes framework and RCTs

- 2 Treatment policy estimands
- **3** The role of baseline covariates
- 4 Marginal/conditional vs. unadjusted/adjusted
- **5** Heterogeneity of conditional estimands
- 6 Non-collapsibility
- The choice between marginal and conditional estimands
- 8 For more...

Baseline covariates

• Randomisation ensures that these causal contrasts correspond to statistical contrasts, e.g.

$$\mathbb{E}(\boldsymbol{Y}^{1}) - \mathbb{E}(\boldsymbol{Y}^{0}) = \mathbb{E}(\boldsymbol{Y}|\boldsymbol{A}=1) - \mathbb{E}(\boldsymbol{Y}|\boldsymbol{A}=0).$$

Baseline covariates

• Randomisation ensures that these causal contrasts correspond to statistical contrasts, e.g.

$$\mathbb{E}(\boldsymbol{Y}^{1}) - \mathbb{E}(\boldsymbol{Y}^{0}) = \mathbb{E}(\boldsymbol{Y}|\boldsymbol{A}=1) - \mathbb{E}(\boldsymbol{Y}|\boldsymbol{A}=0).$$

• Exchangeability $(A \perp Y^a, a = 1, 0)$ is rarely plausible in observational studies. Instead, we typically rely on conditional exchangeability

 $A \perp Y^a | W, a = 1, 0$

given a set of baseline covariates (confounders) W.

Baseline covariates

• Randomisation ensures that these causal contrasts correspond to statistical contrasts, e.g.

$$\mathbb{E}(\boldsymbol{Y}^{1}) - \mathbb{E}(\boldsymbol{Y}^{0}) = \mathbb{E}(\boldsymbol{Y}|\boldsymbol{A}=1) - \mathbb{E}(\boldsymbol{Y}|\boldsymbol{A}=0).$$

• Exchangeability $(A \perp Y^a, a = 1, 0)$ is rarely plausible in observational studies. Instead, we typically rely on conditional exchangeability

 $A \perp Y^a | W, a = 1, 0$

given a set of baseline covariates (confounders) W.

• W play a vital role in observational studies: controlling for confounding.

• Randomisation ensures that these causal contrasts correspond to statistical contrasts, e.g.

$$\mathbb{E}(\boldsymbol{Y}^{1}) - \mathbb{E}(\boldsymbol{Y}^{0}) = \mathbb{E}(\boldsymbol{Y}|\boldsymbol{A}=1) - \mathbb{E}(\boldsymbol{Y}|\boldsymbol{A}=0).$$

• Exchangeability $(A \perp Y^a, a = 1, 0)$ is rarely plausible in observational studies. Instead, we typically rely on conditional exchangeability

 $A \perp Y^a | W, a = 1, 0$

given a set of baseline covariates (confounders) W.

• W play a vital role in observational studies: controlling for confounding.

• In RCTs, where confounding is not an issue, it is perhaps not surprising that W have traditionally received less attention.

1. First a description of the distribution of baseline covariates by arm is almost always given.

1. First a description of the distribution of baseline covariates by arm is almost always given.

- Used to illustrate 'successful' randomisation etc.

1. First a description of the distribution of baseline covariates by arm is almost always given.

- Used to illustrate 'successful' randomisation etc.
- This is not our focus today.

1. First a description of the distribution of baseline covariates by arm is almost always given.

- Used to illustrate 'successful' randomisation etc.
- This is not our focus today.

2. Baseline covariates W can be used in the definition of the causal estimand of interest.

1. First a description of the distribution of baseline covariates by arm is almost always given.

- Used to illustrate 'successful' randomisation etc.
- This is not our focus today.

2. Baseline covariates W can be used in the definition of the causal estimand of interest.

— e.g. subgroup analyses.

1. First a description of the distribution of baseline covariates by arm is almost always given.

- Used to illustrate 'successful' randomisation etc.
- This is not our focus today.

2. Baseline covariates W can be used in the definition of the causal estimand of interest.

— e.g. subgroup analyses.

3. They can also be used in the analysis even when they don't appear in the estimand.

1. First a description of the distribution of baseline covariates by arm is almost always given.

- Used to illustrate 'successful' randomisation etc.
- This is not our focus today.

2. Baseline covariates W can be used in the definition of the causal estimand of interest.

— e.g. subgroup analyses.

3. They can also be used in the analysis even when they don't appear in the estimand.

- e.g. to increase efficiency / power.

1. First a description of the distribution of baseline covariates by arm is almost always given.

- Used to illustrate 'successful' randomisation etc.
- This is not our focus today.

2. Baseline covariates W can be used in the definition of the causal estimand of interest.

— e.g. subgroup analyses.

3. They can also be used in the analysis even when they don't appear in the estimand.

- e.g. to increase efficiency / power.
- Some confusion persists over this issue.

Outline

The potential outcomes framework and RCTs

- 2 Treatment policy estimands
- **3** The role of baseline covariates
- 4 Marginal/conditional vs. unadjusted/adjusted
- **5** Heterogeneity of conditional estimands
- 6 Non-collapsibility
- The choice between marginal and conditional estimands
- 8 For more...

$Conditioning \ vs. \ adjusting$

• One partial explanation for the confusion is that traditionally conditional and adjusted are used interchangeably, likewise marginal and unadjusted.

- One partial explanation for the confusion is that traditionally conditional and adjusted are used interchangeably, likewise marginal and unadjusted.
- A useful suggestion is that marginal/conditional is used to describe the estimand of interest and unadjusted/adjusted for the analysis performed.

- One partial explanation for the confusion is that traditionally conditional and adjusted are used interchangeably, likewise marginal and unadjusted.
- A useful suggestion is that marginal/conditional is used to describe the estimand of interest and unadjusted/adjusted for the analysis performed.
- It is perfectly possible to obtain an adjusted estimator of a marginal estimand, for example.

- One partial explanation for the confusion is that traditionally conditional and adjusted are used interchangeably, likewise marginal and unadjusted.
- A useful suggestion is that marginal/conditional is used to describe the estimand of interest and unadjusted/adjusted for the analysis performed.
- It is perfectly possible to obtain an adjusted estimator of a marginal estimand, for example.
 - See Kelly's and Alex's talks.

- One partial explanation for the confusion is that traditionally conditional and adjusted are used interchangeably, likewise marginal and unadjusted.
- A useful suggestion is that marginal/conditional is used to describe the estimand of interest and unadjusted/adjusted for the analysis performed.
- It is perfectly possible to obtain an adjusted estimator of a marginal estimand, for example.
 - See Kelly's and Alex's talks.
- Adjusted estimators of marginal estimands are almost always more precise than unadjusted estimators.

- One partial explanation for the confusion is that traditionally conditional and adjusted are used interchangeably, likewise marginal and unadjusted.
- A useful suggestion is that marginal/conditional is used to describe the estimand of interest and unadjusted/adjusted for the analysis performed.
- It is perfectly possible to obtain an adjusted estimator of a marginal estimand, for example.
 - See Kelly's and Alex's talks.
- Adjusted estimators of marginal estimands are almost always more precise than unadjusted estimators.
 - This is the case for binary and time-to-event outcomes, not just for continuous outcomes as is sometimes said.

- One partial explanation for the confusion is that traditionally conditional and adjusted are used interchangeably, likewise marginal and unadjusted.
- A useful suggestion is that marginal/conditional is used to describe the estimand of interest and unadjusted/adjusted for the analysis performed.
- It is perfectly possible to obtain an adjusted estimator of a marginal estimand, for example.
 - See Kelly's and Alex's talks.
- Adjusted estimators of marginal estimands are almost always more precise than unadjusted estimators.
 - This is the case for binary and time-to-event outcomes, not just for continuous outcomes as is sometimes said.
 - Confusion enters when people compare the SE of an (adjusted) estimator of a conditional estimand with the SE of an unadjusted estimator of a marginal estimand: apple vs. orange.

Outline

The potential outcomes framework and RCTs

- 2 Treatment policy estimands
- **3** The role of baseline covariates
- 4 Marginal/conditional vs. unadjusted/adjusted
- **5** Heterogeneity of conditional estimands
- 6 Non-collapsibility
- The choice between marginal and conditional estimands
- 8 For more. .

• Another important distinction concerns heterogeneity.

- Another important distinction concerns heterogeneity.
- A focus on conditional estimands can mean e.g. separately estimating

$$\phi_{\mathsf{F}} = \mathbb{E}(\mathbf{Y}^{1} - \mathbf{Y}^{0}|\mathsf{Sex} = \mathsf{F}) \text{ and } \phi_{\mathsf{M}} = \mathbb{E}(\mathbf{Y}^{1} - \mathbf{Y}^{0}|\mathsf{Sex} = \mathsf{M})$$

- Another important distinction concerns heterogeneity.
- A focus on conditional estimands can mean e.g. separately estimating

$$\phi_{\mathsf{F}} = \mathbb{E}(Y^1 - Y^0 | \mathsf{Sex} = \mathsf{F}) \text{ and } \phi_{\mathsf{M}} = \mathbb{E}(Y^1 - Y^0 | \mathsf{Sex} = \mathsf{M})$$

What is the treatment effect in women? What is it in men? (Are they similar?)

- Another important distinction concerns heterogeneity.
- A focus on conditional estimands can mean e.g. separately estimating

$$\phi_{\mathsf{F}} = \mathbb{E}(Y^1 - Y^0 | \mathsf{Sex} = \mathsf{F}) \text{ and } \phi_{\mathsf{M}} = \mathbb{E}(Y^1 - Y^0 | \mathsf{Sex} = \mathsf{M})$$

- What is the treatment effect in women? What is it in men? (Are they similar?)
- It's also possible, however, to have a single conditional treatment effect

$$\phi = \mathbb{E}(Y^1 - Y^0 | W)$$

- Another important distinction concerns heterogeneity.
- A focus on conditional estimands can mean e.g. separately estimating

$$\phi_{\mathsf{F}} = \mathbb{E}(Y^1 - Y^0 | \mathsf{Sex} = \mathsf{F}) \text{ and } \phi_{\mathsf{M}} = \mathbb{E}(Y^1 - Y^0 | \mathsf{Sex} = \mathsf{M})$$

- What is the treatment effect in women? What is it in men? (Are they similar?)
- It's also possible, however, to have a single conditional treatment effect

$$\phi = \mathbb{E}(Y^1 - Y^0 | W)$$

— This is the default implied by a regression model.

- Another important distinction concerns heterogeneity.
- A focus on conditional estimands can mean e.g. separately estimating

$$\phi_{\mathsf{F}} = \mathbb{E}(Y^1 - Y^0 | \mathsf{Sex} = \mathsf{F}) \text{ and } \phi_{\mathsf{M}} = \mathbb{E}(Y^1 - Y^0 | \mathsf{Sex} = \mathsf{M})$$

- What is the treatment effect in women? What is it in men? (Are they similar?)
- It's also possible, however, to have a single conditional treatment effect

$$\phi = \mathbb{E}(\mathbf{Y}^1 - \mathbf{Y}^0 | W)$$

- This is the default implied by a regression model.
- Depending on the effect measure, a conditional estimand assumed homogeneous across levels of *W* may or may not be equal to the corresponding marginal estimand.

- Another important distinction concerns heterogeneity.
- A focus on conditional estimands can mean e.g. separately estimating

$$\phi_{\mathsf{F}} = \mathbb{E}(Y^1 - Y^0 | \mathsf{Sex} = \mathsf{F}) \text{ and } \phi_{\mathsf{M}} = \mathbb{E}(Y^1 - Y^0 | \mathsf{Sex} = \mathsf{M})$$

- What is the treatment effect in women? What is it in men? (Are they similar?)
- It's also possible, however, to have a single conditional treatment effect

$$\phi = \mathbb{E}(\mathbf{Y}^1 - \mathbf{Y}^0 | W)$$

— This is the default implied by a regression model.

- Depending on the effect measure, a conditional estimand assumed homogeneous across levels of *W* may or may not be equal to the corresponding marginal estimand.
 - This is known as non-collapsibility and is certainly a source of much confusion.

Outline

The potential outcomes framework and RCTs

- 2 Treatment policy estimands
- **3** The role of baseline covariates
- 4 Marginal/conditional vs. unadjusted/adjusted
- **5** Heterogeneity of conditional estimands

6 Non-collapsibility

🕜 The choice between marginal and conditional estimands

B For more. .

• To explain non-collapsibility, consider a binary outcome Y, a binary treatment A and (for simplicity) a single continuous baseline covariate W.

- To explain non-collapsibility, consider a binary outcome *Y*, a binary treatment *A* and (for simplicity) a single continuous baseline covariate *W*.
- A GLM for Y given A and W with link function f, assuming no effect modification, is given by:

$$\Pr(Y = 1 | A = a, W) = \mathbb{E}(Y | A = a, W) = f^{-1}(\eta + \gamma W + \nu a)$$

- To explain non-collapsibility, consider a binary outcome *Y*, a binary treatment *A* and (for simplicity) a single continuous baseline covariate *W*.
- A GLM for Y given A and W with link function f, assuming no effect modification, is given by:

$$\Pr(Y = 1 | A = a, W) = \mathbb{E}(Y | A = a, W) = f^{-1}(\eta + \gamma W + \nu a)$$

• By randomisation, ν can be given a causal interpretation:

$$\Pr(Y^{a} = 1|W) = \mathbb{E}(Y^{a}|W) = f^{-1}(\eta + \gamma W + \nu a)$$

- To explain non-collapsibility, consider a binary outcome *Y*, a binary treatment *A* and (for simplicity) a single continuous baseline covariate *W*.
- A GLM for Y given A and W with link function f, assuming no effect modification, is given by:

$$\Pr(Y = 1 | A = a, W) = \mathbb{E}(Y | A = a, W) = f^{-1}(\eta + \gamma W + \nu a)$$

• By randomisation, ν can be given a causal interpretation:

$$\Pr(Y^{a} = 1|W) = \mathbb{E}(Y^{a}|W) = f^{-1}(\eta + \gamma W + \nu a)$$

• Consider instead the marginal 'model':

$$\mathbb{E}(Y|A=a)=f^{-1}(\alpha+\beta a)$$

- To explain non-collapsibility, consider a binary outcome *Y*, a binary treatment *A* and (for simplicity) a single continuous baseline covariate *W*.
- A GLM for Y given A and W with link function f, assuming no effect modification, is given by:

$$\Pr(Y = 1 | A = a, W) = \mathbb{E}(Y | A = a, W) = f^{-1}(\eta + \gamma W + \nu a)$$

• By randomisation, ν can be given a causal interpretation:

$$\Pr(Y^a = 1 | W) = \mathbb{E}(Y^a | W) = f^{-1}(\eta + \gamma W + \nu a)$$

• Consider instead the marginal 'model':

$$\mathbb{E}(Y|A=a)=f^{-1}(\alpha+\beta a)$$

• By randomisation, β too can be given a causal interpretation:

$$\mathbb{E}(Y^a) = f^{-1}(\alpha + \beta a)$$

- To explain non-collapsibility, consider a binary outcome Y, a binary treatment A and (for simplicity) a single continuous baseline covariate W.
- A GLM for Y given A and W with link function f, assuming no effect modification, is given by:

$$\Pr(Y = 1 | A = a, W) = \mathbb{E}(Y | A = a, W) = f^{-1}(\eta + \gamma W + \nu a)$$

• By randomisation, ν can be given a causal interpretation:

$$\Pr(Y^a = 1 | W) = \mathbb{E}(Y^a | W) = f^{-1}(\eta + \gamma W + \nu a)$$

• Consider instead the marginal 'model':

$$\mathbb{E}(Y|A=a)=f^{-1}(\alpha+\beta a)$$

• By randomisation, β too can be given a causal interpretation:

$$\mathbb{E}(Y^{a}) = f^{-1}(\alpha + \beta a)$$

• Depending on f, β and ν may not be equal: non-collapsibility.

• The essence of the GLM (for a given link function f) when used in this context is that it specifies how $\mathbb{E}(Y^0|\cdot)$ maps to $\mathbb{E}(Y^1|\cdot)$.

- The essence of the GLM (for a given link function f) when used in this context is that it specifies how $\mathbb{E}(Y^0|\cdot)$ maps to $\mathbb{E}(Y^1|\cdot)$.
- Specifically, $\mathbb{E}(Y^0|\cdot)$ maps to $\mathbb{E}(Y^1|\cdot)$ via the function g with parameter θ where

ł

$$\mathsf{g}_{ heta}(\mathsf{p}) = f^{-1}\left\{f(\mathsf{p}) + heta
ight\}$$

- The essence of the GLM (for a given link function f) when used in this context is that it specifies how $\mathbb{E}(Y^0|\cdot)$ maps to $\mathbb{E}(Y^1|\cdot)$.
- Specifically, $\mathbb{E}(Y^0|\cdot)$ maps to $\mathbb{E}(Y^1|\cdot)$ via the function g with parameter θ where

ł

$$\mathsf{g}_{ heta}(\mathsf{p}) = f^{-1}\left\{f(\mathsf{p}) + heta
ight\}$$

• Consider what happens if we apply g_{ν} (g with the conditional parameter) to the marginal $\mathbb{E}(Y^0)$:

$$g_{\nu}\left\{\mathbb{E}(\boldsymbol{Y}^{0})\right\} = g_{\nu}\left[\mathbb{E}\left\{\mathbb{E}(\boldsymbol{Y}^{0}|W)\right\}\right]$$

- The essence of the GLM (for a given link function f) when used in this context is that it specifies how $\mathbb{E}(Y^0|\cdot)$ maps to $\mathbb{E}(Y^1|\cdot)$.
- Specifically, $\mathbb{E}(Y^0|\cdot)$ maps to $\mathbb{E}(Y^1|\cdot)$ via the function g with parameter θ where

$$\mathsf{g}_{ heta}(\mathsf{p}) = f^{-1}\left\{f(\mathsf{p}) + heta
ight\}$$

• Consider what happens if we apply g_{ν} (g with the conditional parameter) to the marginal $\mathbb{E}(Y^0)$:

$$g_{
u}\left\{\mathbb{E}(Y^{0})
ight\}=g_{
u}\left[\mathbb{E}\left\{\mathbb{E}(Y^{0}|W)
ight\}
ight]$$

• IF $g_{\nu}(p)$ is a linear function of p then we can interchange g_{ν} and \mathbb{E} : $g_{\nu} \{\mathbb{E}(Y^{0})\} = \mathbb{E} \left[g_{\nu} \{\mathbb{E}(Y^{0}|W)\}\right] = \mathbb{E} \{\mathbb{E}(Y^{1}|W)\} = \mathbb{E}(Y^{1})$

- The essence of the GLM (for a given link function f) when used in this context is that it specifies how $\mathbb{E}(Y^0|\cdot)$ maps to $\mathbb{E}(Y^1|\cdot)$.
- Specifically, $\mathbb{E}(Y^0|\cdot)$ maps to $\mathbb{E}(Y^1|\cdot)$ via the function g with parameter θ where

$$\mathsf{g}_{ heta}(\mathsf{p}) = f^{-1}\left\{f(\mathsf{p}) + heta
ight\}$$

• Consider what happens if we apply g_{ν} (g with the conditional parameter) to the marginal $\mathbb{E}(Y^0)$:

$$g_{
u}\left\{\mathbb{E}(Y^{0})
ight\}=g_{
u}\left[\mathbb{E}\left\{\mathbb{E}(Y^{0}|W)
ight\}
ight]$$

- IF $g_{\nu}(p)$ is a linear function of p then we can interchange g_{ν} and \mathbb{E} : $g_{\nu} \{\mathbb{E}(Y^{0})\} = \mathbb{E} \left[g_{\nu} \{\mathbb{E}(Y^{0}|W)\}\right] = \mathbb{E} \{\mathbb{E}(Y^{1}|W)\} = \mathbb{E}(Y^{1})$
- Thus **IF** g(p) is a linear function of p then $\beta = \nu$.

- The essence of the GLM (for a given link function f) when used in this context is that it specifies how $\mathbb{E}(Y^0|\cdot)$ maps to $\mathbb{E}(Y^1|\cdot)$.
- Specifically, $\mathbb{E}(Y^0|\cdot)$ maps to $\mathbb{E}(Y^1|\cdot)$ via the function g with parameter θ where

$$\mathsf{g}_{ heta}(\mathsf{p}) = f^{-1}\left\{f(\mathsf{p}) + heta
ight\}$$

• Consider what happens if we apply g_{ν} (g with the conditional parameter) to the marginal $\mathbb{E}(Y^0)$:

$$g_{
u}\left\{\mathbb{E}(Y^{0})
ight\}=g_{
u}\left[\mathbb{E}\left\{\mathbb{E}(Y^{0}|W)
ight\}
ight]$$

- IF $g_{\nu}(p)$ is a linear function of p then we can interchange g_{ν} and \mathbb{E} : $g_{\nu} \{\mathbb{E}(Y^{0})\} = \mathbb{E} \left[g_{\nu} \{\mathbb{E}(Y^{0}|W)\}\right] = \mathbb{E} \{\mathbb{E}(Y^{1}|W)\} = \mathbb{E}(Y^{1})$
- Thus **IF** g(p) is a linear function of p then $\beta = \nu$.
- But for some link functions f, e.g. logit, g(p) is non-linear.

g(p) for common link functions

Outline

The potential outcomes framework and RCTs

- 2 Treatment policy estimands
- **3** The role of baseline covariates
- 4 Marginal/conditional vs. unadjusted/adjusted
- **5** Heterogeneity of conditional estimands
- 6 Non-collapsibility

The choice between marginal and conditional estimands

8 For more. . .

• A single number with a simple(?) interpretation.

- A single number with a simple(?) interpretation.
 - Yes, but not to be used as an argument for an unadjusted analysis.

- A single number with a simple(?) interpretation.
 - Yes, but not to be used as an argument for an unadjusted analysis.
- Useful for making blanket policy decisions e.g. should this drug be approved?

- A single number with a simple(?) interpretation.
 - Yes, but not to be used as an argument for an unadjusted analysis.
- Useful for making blanket policy decisions e.g. should this drug be approved?
 - $-\!\!\!$ Yes, but only if the population to which the decision is relevant is similar to the RCT population.

- A single number with a simple(?) interpretation.
 - Yes, but not to be used as an argument for an unadjusted analysis.
- Useful for making blanket policy decisions e.g. should this drug be approved?
 - $-\!\!\!$ Yes, but only if the population to which the decision is relevant is similar to the RCT population.
- Less risk that model misspecification invalidates the analysis.

- A single number with a simple(?) interpretation.
 - Yes, but not to be used as an argument for an unadjusted analysis.
- Useful for making blanket policy decisions e.g. should this drug be approved?
 - Yes, but only if the population to which the decision is relevant is similar to the RCT population.
- Less risk that model misspecification invalidates the analysis.
 - Sometimes used in defense of an unadjusted analysis; also used in defense of an adjusted analysis of a marginal estimand.

- A single number with a simple(?) interpretation.
 - Yes, but not to be used as an argument for an unadjusted analysis.
- Useful for making blanket policy decisions e.g. should this drug be approved?
 - Yes, but only if the population to which the decision is relevant is similar to the RCT population.
- Less risk that model misspecification invalidates the analysis.
 - Sometimes used in defense of an unadjusted analysis; also used in defense of an adjusted analysis of a marginal estimand.
 - Either way, these arguments are doubtful. Randomisation often gives protection *even when it may appear that* we are relying on additional assumptions in order to bring in W: see all remaining talks.

- A single number with a simple(?) interpretation.
 - Yes, but not to be used as an argument for an unadjusted analysis.
- Useful for making blanket policy decisions e.g. should this drug be approved?
 - Yes, but only if the population to which the decision is relevant is similar to the RCT population.
- Less risk that model misspecification invalidates the analysis.
 - Sometimes used in defense of an unadjusted analysis; also used in defense of an adjusted analysis of a marginal estimand.
 - Either way, these arguments are doubtful. Randomisation often gives protection *even when it may appear that* we are relying on additional assumptions in order to bring in W: see all remaining talks.

• Eliminates concerns over multiple testing / 'gaming' the analysis.

- A single number with a simple(?) interpretation.
 - Yes, but not to be used as an argument for an unadjusted analysis.
- Useful for making blanket policy decisions e.g. should this drug be approved?
 - Yes, but only if the population to which the decision is relevant is similar to the RCT population.
- Less risk that model misspecification invalidates the analysis.
 - Sometimes used in defense of an unadjusted analysis; also used in defense of an adjusted analysis of a marginal estimand.
 - Either way, these arguments are doubtful. Randomisation often gives protection *even when it may appear that* we are relying on additional assumptions in order to bring in W: see all remaining talks.
- Eliminates concerns over multiple testing / 'gaming' the analysis.
 - Possibly, but with modern approaches, pre-specification is feasible even when using W: see all remaining talks.

• A more comprehensive understanding of treatment effect, e.g. groups for whom treatment may be especially beneficial.

- A more comprehensive understanding of treatment effect, e.g. groups for whom treatment may be especially beneficial.
 - Yes, but for this, the conditional estimands must be allowed to differ (heterogeneity).

- A more comprehensive understanding of treatment effect, e.g. groups for whom treatment may be especially beneficial.
 - Yes, but for this, the conditional estimands must be allowed to differ (heterogeneity).
- Estimators of conditional estimands are more precise.

- A more comprehensive understanding of treatment effect, e.g. groups for whom treatment may be especially beneficial.
 - Yes, but for this, the conditional estimands must be allowed to differ (heterogeneity).
- Estimators of conditional estimands are more precise.
 - This is an argument for adjusted analyses; not (necessarily) for conditional estimands.

- A more comprehensive understanding of treatment effect, e.g. groups for whom treatment may be especially beneficial.
 - Yes, but for this, the conditional estimands must be allowed to differ (heterogeneity).
- Estimators of conditional estimands are more precise.
 - This is an argument for adjusted analyses; not (necessarily) for conditional estimands.
- Conditional estimands are more relevant to an individual and more transportable to different populations.

- A more comprehensive understanding of treatment effect, e.g. groups for whom treatment may be especially beneficial.
 - Yes, but for this, the conditional estimands must be allowed to differ (heterogeneity).
- Estimators of conditional estimands are more precise.
 - This is an argument for adjusted analyses; not (necessarily) for conditional estimands.
- Conditional estimands are more relevant to an individual and more transportable to different populations.
 - Yes. This is obviously the case if there is heterogeneity and the heterogeneity is modelled.

- A more comprehensive understanding of treatment effect, e.g. groups for whom treatment may be especially beneficial.
 - Yes, but for this, the conditional estimands must be allowed to differ (heterogeneity).
- Estimators of conditional estimands are more precise.
 - This is an argument for adjusted analyses; not (necessarily) for conditional estimands.
- Conditional estimands are more relevant to an individual and more transportable to different populations.
 - Yes. This is obviously the case if there is heterogeneity and the heterogeneity is modelled.
 - It even tends to be the case if the conditional effects are wrongly assumed homogeneous.

- A more comprehensive understanding of treatment effect, e.g. groups for whom treatment may be especially beneficial.
 - Yes, but for this, the conditional estimands must be allowed to differ (heterogeneity).
- Estimators of conditional estimands are more precise.
 - This is an argument for adjusted analyses; not (necessarily) for conditional estimands.
- Conditional estimands are more relevant to an individual and more transportable to different populations.
 - Yes. This is obviously the case if there is heterogeneity and the heterogeneity is modelled.
 - It even tends to be the case if the conditional effects are wrongly assumed homogeneous.
 - The choice of effect measure can be important when considering transportability, however.

- A more comprehensive understanding of treatment effect, e.g. groups for whom treatment may be especially beneficial.
 - Yes, but for this, the conditional estimands must be allowed to differ (heterogeneity).
- Estimators of conditional estimands are more precise.
 - This is an argument for adjusted analyses; not (necessarily) for conditional estimands.
- Conditional estimands are more relevant to an individual and more transportable to different populations.
 - Yes. This is obviously the case if there is heterogeneity and the heterogeneity is modelled.
 - It even tends to be the case if the conditional effects are wrongly assumed homogeneous.
 - The choice of effect measure can be important when considering transportability, however.
 - See work by Anders Huitfeldt.

Outline

The potential outcomes framework and RCTs

- 2 Treatment policy estimands
- **3** The role of baseline covariates
- 4 Marginal/conditional vs. unadjusted/adjusted
- **5** Heterogeneity of conditional estimands
- 6 Non-collapsibility
- The choice between marginal and conditional estimands

More on causal inference, collapsibility, etc

	COMMENTARY NOncoll Part 1: Sander Green Should ratio? Sander Gree Published:	Anticles N PRESS apsibility, confounding, and sparse-data bias. The oddities of odds and & 10.021 + 0.021 + 0.021 + 0.01168/jstinepi.2021.06.007 repeators, controversies about the odds enterd & unre 10.2021 - DOI: https://doi.org/10.10168/jstinepi.2021.06.004
Huitleidt ef al Emerg Theme: Epidemiol (2019) 16:1 https://doi.org/10.1186/s12982-018-0083-9	Emerging Themes in Epidemiology	Runival Utahar 2010 Refut 20 Mg 2020 Acoptel 23340 2020 DOC 1130023Mg 20100207 RESEARCH PAPER
RESEARCH ARTICLE On the collapsibility of measure in the counterfactual causal fra	Making apples from oranges: Comparing noncollapsible effect estimators and their standard errors after adjustment for different covariate sets Rhian Daniel jinging Zhang Daniel Farewell	

Anders Huitfeldt^{1*}^O, Mats J. Stensrud^{2,4} and Etsuji Suzuki^{3,4}