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INTRODUCTION



CONDITIONAL EFFECT ESTIMANDS

Conditional effects describe the impact of a treatment
within subpopulations who share the same covariate values.

This can mean e.g. separately estimating

E(Y 1 − Y 0|Sex=F) and E(Y 1 − Y 0|Sex=M)

What is the treatment effect in women? And in men?

Due to non-collapsibility,
a conditional estimand assumed to be homogeneous
may still differ from the corresponding marginal estimand.

Even if

φ =
P(Y 1 = 1|W)/P(Y 1 = 0|W)

P(Y 0 = 1|W)/P(Y 0 = 0|W)

does not vary with W , it 6= the marginal odds ratio (in general).
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TARGETED LEARNING OF CONDITIONAL EFFECTS

Compared with marginal estimands,
targeted learning for conditional effects is more subtle.

Conventional thinking ties these effects to parametric models.

Without some simplifying assumptions
(e.g. effect homogeneity), conditional effects like

P(Y 1 = 1|W)/P(Y 1 = 0|W)

P(Y 0 = 1|W)/P(Y 0 = 0|W)

may be high-dimensional and difficult to report.

Statistical inference is also very challenging.
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OUTLINE OF THIS TALK

I will first explore how to obtain valid inference for conditional causal effects,
in combination with variable selection.

I will focus on the hazard ratio.

The proposal relies on potentially restrictive assumptions
(e.g. proportional hazards).

Closer to the spirit of targeted learning,
I will discuss ongoing work on inferring conditional causal hazard ratios
whilst relaxing model assumptions as far as possible.
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INFERENCE FOR THE HAZARD RATIO



TIME-TO-EVENT OUTCOMES

When the outcome is a time-to-event, we have many options for describing the data.

(Sedgwick and Joekes, 2013)

Survival curves offer a convenient visual aid. 13 / 57



SUMMARISING THE TREATMENT EFFECT

Suppose we want to use these curves to obtain a simple summary of the treatment effect
(+ confidence intervals).

I could compare the chance of surviving to month 2 between treatment and control groups.
Or surviving to month 4....
...or month 6....or 8....

When measuring associations w.r.t event time,
the strength of the association can depend upon the chosen window of time.

This also applies to other common measures (e.g. restricted mean survival time).
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THE HAZARD RATIO

Unlike competing measures,
a constant hazard ratio does not require pre-specification of a time window.

In addition to other nice properties of conditional estimands,
a (conditional) hazard ratio thus offers
a convenient summary of the association of interest.

Things became more complicated when hazards are non-proportional....
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THE COX MODEL ADJUSTED FOR COVARIATES

For the moment, I will assume that there is no censoring.

We might fit the adjusted Cox model:

λ(t|A, W) = λ0(t) exp{β1A + βT
2 W}

This model expresses:
the treatment-hazard association.
the covariate-hazard association.

If both the red and blue parts are correct,
then the partial likelihood estimator of β1

captures the conditional causal (log) hazard ratio.

Data-driven variable selection tempers concerns about misspecification.
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HOW CAN WE USE THE DATA TO SELECT A MODEL? (1)

Let’s look first at the part involving the treatment effect.

λ(t|A, W) = λ0(t) exp{β1A + βT
2 W}

Assumption: the conditional hazard ratio for treatment
doesn’t depend on time, or on covariates.

One might test for interactions, or use the Lasso to check this.

However, standard post-selection p-values/confidence intervals
for β1 are invalid....
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HOW CAN WE USE THE DATA TO SELECT A MODEL? (2)
Suppose we used the data to select the blue part of the model,
not involving treatment.

Cox model + stepwise selection strategy to select covariates.
How does this effect inference on the target of interest e.g. β1?

Tests of the null hypothesis that β1=0 remain valid,
if we ask for a robust standard error.
(Van Lancker et al., 2020)

This is also extends to tests of the null in generalised linear models.
(Belloni et al., 2014, 2016)

It is also approximately the case for confidence intervals for β1

when the treatment effect is small in magnitude.
Valid intervals can be obtained with an additional weighted regression step.

Inference after variable selection

Data-adaptive inference is easier when our target (e.g. β1) is chosen in advance.
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WHY DOES THIS WORK?
In observational data, W may include confounders.
In selecting confounders based on their association with an outcome,
we may miss variables weakly predictive of the outcome, but strongly associated with A.
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(Dukes and Vansteelandt, 2020)

If treatment is randomised, then these concerns disappear....
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CENSORING COMPLICATES MATTERS

With informative censoring, we may have no option other than adjusting for covariates.

Suppose we test for whether to adjust for W1 in our Cox model.

If we keep it, we implicitly assume that censoring is independent of survival time
given treatment and W1.

If we remove it, we make a stronger censoring assumption.

Ignoring this can lead to tests of the causal null
having inflated Type I error.

Censoring and variable selection

Changing the adjustment set changes our censoring assumption!
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HOW TO ACCOUNT FOR CENSORING?

For testing the null hypothesis of no treatment effect,
Van Lancker et al. (2020) propose the following:

1 Perform selection based on a Cox model for survival time.

2 Perform a second selection step based on a Cox model for censoring time.
3 Refit the Cox model for survival time, adjusting for covariates selected in either step.
4 Test β1=0 based on the final model.

This procedure is seen to preserve Type I error
when survival times are independent of censoring times,
given A and W .

Variables that are likely only predictive of censoring
should be removed in advance of seeing the data.
See Alex’s talk
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RELAXING THE ASSUMPTIONS



THE PROPORTIONAL HAZARDS ASSUMPTION

Hazards have been argued to be non-proportional in many settings.

(Stensrud and Hernán, 2020)
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WHAT’S THE TARGET?

What are we estimating in the Cox model when the proportional hazards assumption fails?

No good understanding of what the partial likelihood estimator converges to
when the model is wrong.....

Under misspecification,
the target of the standard estimator depends on the censoring distribution.
(Struthers and Kalbfleisch, 1986; Whitney et al., 2019)

The situation becomes even more complicated with covariates.
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CHANGING PERSPECTIVE

We have defined our estimand as a parameter in a model.
When the model is wrong, what we infer depends on the estimator we use.
This may not be of interest!

This highlights the benefits of choosing an estimand in a model-free way.
The estimand may coincide with the model parameter when assumptions hold...
...but otherwise still captures the scientific question.

(van der Laan and Rose, 2011; Vansteelandt and Dukes, 2020)
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APPLICATION TO THE COX MODEL

Reconsider the model
λ(t|A, W) = λ0(t) exp{β1A + βT

2 W}
Ideally, we want an estimand that:

reduces to the log hazard ratio β1 when the model is correct.

is a weighted average of (log) causal hazard ratios
when both parts of the model are wrong.
does not depend on the censoring distribution.

Such estimands now exist.
(Whitney et al., 2019; Vansteelandt et al. 2021)

Whitney et al. (2019) weight by the marginal time-to-event distribution;
more efficient choices are also available.
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ESTIMATION

Inferring this new estimand
requires estimation of the conditional hazard (given A and W ),
as well as the censoring mechanism.

This can be done using variable selection,
but also more flexible machine learning methods.

As for the approaches in Alex’s talk,
we can still obtain valid tests and confidence intervals afterwards.

Even if the selected model is highly complex,
we still return a scalar summary of the association of interest.
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SUMMARY



SUMMARY

We often think of conditional causal effects
as parameters in regression models.

So long as we specify our estimand in advance,
we have some freedom in letting the data choose our model,
whilst maintaining type I error/interval coverage.

Our estimand could be a regression parameter,
or (even better) defined in a model-free way.

The latter ensures that always return something
that answers the question of interest.
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SOFTWARE

See the ‘hdm’ package in R, for valid confidence intervals and hypothesis tests
for conditional treatment effects indexing linear and logistic models,
after variable selection using the Lasso.
(Chernozhukov et al., 2016)

Much more to be done for time-to-event settings.
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