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1 Improving Efficiency of Final Analysis

2 Improving efficiency of Interim Analysis
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Potential of baseline covariates

Let’s go back to Stijn’s simple try. . .

Age Trt Y Y 1 P̂1 Y 0 P̂0

40 1 1 1 0.8 ? 0.7
50 1 0 0 0.6 ? 0.55
60 1 1 1 0.7 ? 0.6
50 0 0 ? 0.7 0 0.6
30 0 1 ? 0.6 1 0.5
40 0 0 ? 0.5 0 0.45

By randomization: fine to compare outcomes of treated with
outcomes of untreated

Based on baseline covariates (e.g., age): guesses about what
outcome would be for all participants if they were (un)treated
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Covariate Adjusted Estimator

Example: E (Y 1)

Treated Untreated
Y 1, Age Age

Y 1 ?̂P1P̂1

Estimator for E (Y 1) is obtained by

fitting a logistic regression model for outcome Y given age
among the treated patients,

using this model to impute outcome for all patients,

taking the average of imputed outcomes
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Some Advantages

Similar for an estimate of population disease risk on control

We can then contrast these estimates as differences, ratios, . . .

Focus on marginal treatment effect leads to a simple
interpretation
Same as comparing sample averages

More efficient than standard sample averages if age is
predictive for outcome
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Simulation Results

Results for binary outcome and risk difference under
correctly specified models

n Effect Estimator type Bias Power MSE RE

100 -0.201 Unadj. 0.025 0.463 0.829 1.000
Adj. 0.023 0.607 0.755 0.911

200 -0.201 Unadj. 0.010 0.821 0.864 1.000
Adj. -0.001 0.895 0.749 0.867

500 -0.126 Unadj. -0.013 0.798 0.979 1.000
Adj. -0.007 0.862 0.850 0.868

1000 -0.091 Unadj. 0.012 0.837 0.898 1.000
Adj. 0.020 0.892 0.817 0.910

Results from Benkeser, et al. (2020) “Improving precision and power in

randomized trials for COVID-19 treatments using covariate adjustment, for

binary, ordinal, and time-to-event outcomes.” Biometrics.
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What if models are misspecified?

What if relationship between age and outcome in treated patients
is not linear. . .

For simplicity, the outcome is continuous now 7 / 22
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What if models are misspecified?

In treatment arm: mean of predictions (under treatment) =
mean of observed outcomes, regardless of whether your model
is correct or not

Under randomization, this robustness against misspecification
also holds for mean of predictions (under treatment) for all
patients

⇒ Consistent estimator for E (Y 1), even when model is wrong.
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Potential of baseline covariates

Mean of predictions based on glm’s with canonical link and
intercept, fitted in both arms separately

Asymptotically unbiased estimator, even when outcome
regression model is wrong (robustness)

They overcome the concern as to whether covariate
adjustment (and possible misspecification of the model) is
appropriate in randomized experiments.

Model misspecification may reduce efficiency, but (almost)
never outperformed by the standard analyses (more efficient).
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Inference

Standard errors easy to calculate

Can be done with 1 line of code

Take into account uncertainty in imputations

Similar to variance of sample mean

and are valid even when the model is misspecied (Vermeulen and

Vansteelandt, 2015)

or when variable selection is used (Avagyan and Vansteelandt,

2021).
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Recommendations to Pharma: Gaining Precision

Efficiency can be gained by making explicit use of comparable
groups, without risk of bias.

Use of baseline covariates raises concerns due to
multicollinearity, measurement error, missing data, . . .

All easily addressed without inflating risk of bias.

Use of models raises concerns regarding model building and
variable selection.

Also does not inflate risk of bias when using a pre-specified
algorithm on a pre-specified list of candidate variables.

Main effect models will often suffice; even machine learning
can be used, which is particularly useful in more complex
settings. (see talk Alex Luedtke)
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Improving efficiency of Interim Analysis
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Study Design

SCREEN
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EXPERIMENTAL TREATMENT

CONTROL

Goal

Define Pj (j ∈ {0, 1}) as probability of successful primary outcome;

H0 : P1 = P0 vs HA : P1 > P0.
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Study Design
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Interim Estimator

Cohort 1 Cohort 2 Cohort 3 Cohort 4
Y , X , W X , W W

Y ?? ? ?
Design

AssumptionsŶ (X ,W )A = 1

Estimator for P1 is obtained by

1 fitting a regression model for outcome Y given short-term
endpoint X and baseline covariates W among the treated
patients in cohort 1,

2 using this model to impute outcome Y for the treated
patients in cohort 2,
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Interim Estimator

Cohort 1 Cohort 2 Cohort 3
Y , X , W X , W W

Y ?

Ŷ (W )

?Ŷ (X ,W )A = 1

3 regressing (imputed) outcome Y on the baseline covariates W
in the imputed dataset (cohort 1 and 2),

4 using this model to impute outcome Y for the treated
patients in cohort 3, and

5 taking the average of observed and imputed outcomes Y
(= P̂ interim

1 ).
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Interim Estimator

Under random recruitment,

model misspecification does not introduce bias (robustness),

but may reduce efficiency.

Despite the precision loss, (almost) never outperformed by the
standard analyses (more efficient).

(e.g. Tsiatis, 2006; Qian, Rosenblum and Qiu, submitted 2017)
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Interim Test Statistic

Estimator treatment difference:

P̂ interim
0 : similar reasonings for A = 0

⇒ P̂ interim
1 − P̂ interim

0

Asymptotic variance of P̂ interim
1 − P̂

interim
0 :

Take into account uncertainty in imputations

Normally very complex, very simple here

Similar to variance of sample mean

Inference:

Calculate test statistic based on estimator and variance

Incorporate in interim decision procedure like conditional
power
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Simulation Study: Conditional Power

Interim Analysis to allow stopping for futility when 50% of
information is available

Superiority Method # Days % Recruited Prob. to Stop Power Loss

Proposal, correct 1073 67% 1.1% 0.2%
Proposal, misspecified (1) 1108 69% 1.1% 0.2%
Proposal, misspecified (2) 1118 70% 1.0% 0.2%
Proposal, misspecified (3) 1130 71% 1.0% 0.2%
Proposal, only X 1133 71% 1.0% 0.2%
Standard CP (only Y ) 1223 77% 0.9% 0.2%

Futility Method # Days % Recruited Prob. to Stop

Proposal, correct 1103 69% 48.5%
Proposal, misspecified (1) 1123 70% 48.7%
Proposal, misspecified (2) 1131 71% 48.4%
Proposal, misspecified (3) 1152 72% 48.3%
Proposal, only X 1154 72% 48.4%
Standard CP (only Y ) 1223 76% 48.7%
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Improving interim analyses

Enables inclusion of baseline covariates and early read-outs

Earlier in time and/or more efficient
Protecting type I error (when desired)

General framework

Different types of endpoints (binary, continuous, . . . )
Incorporation of multiple early read-outs
Incorporation of baseline covariates

Proposal extended to re-assess sample size in adaptive designs

Extended to incorporate historical information
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Thank you for your attention!

This project has received funding from VLAIO under the Baekeland
grant agreement HBC.2017.0219.

Van Lancker et al. (2020), Pharmaceutical Statistics
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Asymptotic Variance

Let n′ denote number of recruited patients at interim. Then, s2

can be easily estimated as one over n′ times the sample variance of
the values

Ai/π̂
(
CY
i CX

i /(π̂Y π̂X )(Y − Ŷ1i (X ,W ))

+ CX
i /π̂

X (Ŷ1i (X ,W )− Ŷ1i (W )) + Ŷ1i (Z )− P̂ interim
1

)
−(1− Ai )/(1− π̂)

(
CY
i CX

i /(π̂Y π̂X )(Y − Ŷ0i (X ,W ))

+ CX
i /π̂

X (Ŷ0i (X ,W )− Ŷ0i (W )) + Ŷ0i (W )− P̂ interim
0

)
,

with π̂ the observed randomization probability, π̂X = P̂(CX = 1)
and π̂Y = P̂(CY = 1|CX = 1).
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