

JUNE 29, 2021

TARGETED LEARNING: WHAT, AND WHY YOU SHOULD CARE

Stijn Vansteelandt, Ghent University and the London School of Hygiene and Tropical Medicine

INTRODUCTION

UNADJUSTED ANALYSES ARE NOT ENTIRELY SATISFACTORY

- The primary analysis of RCTs is typically unadjusted or adjusted for only a limited number of discrete stratification factors.
- This is not entirely satisfactory: covariate adjustment
 - can lead to drastic gains in power,

(see Kelly Van Lancker)

and may even be needed to control for informative censoring (or dropout).

(see Alex Luedtke, Oliver Dukes)

- The default strategy for covariate adjustment focuses on coefficients indexing regression models.
- It is also not entirely satisfactory.

STANDARD ADJUSTED ANALYSES ARE NOT ENTIRELY SATISFACTORY

- Typical regression parameters (e.g., odds ratios, hazard ratios) can be subtle to interpret and even change magnitude depending on which covariates are adjusted. (see Bhian Daniel)
- Models may be misspecified,

leading to bias in effect estimates and standard errors.

(e.g., Freedman, 2001; Robins and Rotnitzky, 2001; van der Laan, 2015)

(see Kelly Van Lancker, Alex Luedtke, Oliver Dukes)

This concern is made worse because of trade-offs between correctness and simplicity.

(e.g., Breiman, 2001)

- Model-based analyses can be difficult to pre-specify.
- Model building algorithms aim to prevent misspecification, but may induce model uncertainty.
 - This may inflate Type I errors, and invalidate standard inference.

(Leeb and Pötscher, 2006; van der Laan and Rose, 2011; Dukes and Vansteelandt, 2020)

CAN WE DO BETTER?

A SIMPLE TRY...

- Suppose we aim to learn the treatment effect on a dichotomous outcome (e.g. 'disease').
- Let's use a simple imputation procedure:
 - Estimate disease risk on treatment, \hat{P}^1 , for all trial participants based on a logistic regression in the treated, in function of baseline covariates.

Age	Trt	Y	Y^1	\hat{P}^1
40	1	1	1	0.8
50	1	0	0	0.6
60	1	1	1	0.7
50	0	0	?	0.7
30	0	1	?	0.6
40	0	0	?	0.5

Average these risks for all trial participants

to obtain an estimate of population disease risk on treatment.

A SIMPLE TRY...

Next,

Estimate disease risk on control, \hat{P}^0 , for all trial participants based on a logistic regression in the controls, in function of baseline covariates.

Age	Trt	Y	Y^1	\hat{P}^{1}	Y^0	\hat{P}^0
40	1	1	1	0.8	?	0.7
50	1	0	0	0.6	?	0.55
60	1	1	1	0.7	?	0.6
50	0	0	?	0.7	0	0.6
30	0	1	?	0.6	1	0.5
40	0	0	?	0.5	0	0.45

- Average these risks for all trial participants to obtain an estimate of population disease risk on control.
- We can contrast these estimates as differences, ratios, ...

Some immediate advantages

- Simple analysis
- Simple interpretation

no matter how complex the logistic regression model is.

(thus no need for making trade-offs)

- By contrasting disease risks for the same participants with and without treatment, we gain precision.
 - This is because we can contrast people with the same age, with vs without treatment.

SOME MAGIC

Model misspecification does not induce bias in effect estimates.

Standard errors easy to calculate

(with 1 line of code)

and are valid (in simple randomised experiments)

even when (standard) variable selection is used;

(van der Laan and Rose, 2011)

even when the model is misspecified.

(Vermeulen and Vansteelandt, 2015; Avagyan and Vansteelandt, 2021)

- These properties are the result of exploiting knowledge that randomisation happens independently of covariates.
 - This knowledge is ignored by likelihood-based approaches.

TARGETED LEARNING

MORE FLEXIBLE MODELLING STRATEGIES

- This simple imputation procedure happens to be an example of targeted learning.
- It appears to lend itself easily to more general prediction strategies and even machine learning.
 - This is useful because more accurate modelling can lead to power gains and becomes essential when adjustment is needed for confounding or selection bias.
 - However, it is not guaranteed to have these desirable properties more generally, because these strategies are aimed at small prediction error and not at accurate treatment effect estimates.

TARGETED LEARNING

 Targeted learning strategies therefore update initial predictions and target them towards the estimand of interest.

(van der Laan and Rubin, 2006; Moore and van der Laan, 2009; van der Laan and Rose, 2011)

(see Alex Luedtke)

- It is therefore essential that the starting point of the analysis is the choice of an estimand (rather than the choice of a model).
- This updating does not require advanced methods: it is usually based on a specific single-parameter model built around initial predictions, which is then fitted using maximum likelihood.
- There are parallel developments, known as debiased machine learning.

(Chernozhukov et al., 2018)

TARGETED LEARNING

- Targeted learning is transforming the way how we will do data analysis in the future.
- It brings data analysis back to its essence:

translating a scientific question into an estimands, doing sanity checks, ... with automated model building strategies running in the background.

- This renders pre-specification of the analysis accessible.
- It makes the data analysis more honest, by acknowledging model uncertainty.
- That this is feasible, is quite impressive!

WHAT SAMPLE SIZES ARE NEEDED?

Reliance on asymptotic theory

and experience with nonparametric regression procedures may make one concerned that enormous sample sizes will be needed to make this work.

- This intuition is misleading.
- The focus here is on population-averaged effects,

(cfr. the simple imputation strategy)

which usually do not demand large sample sizes.

IS TARGETED LEARNING NOT TOO COMPLICATED FOR MY DATA?

- An analogy...
- Also martingale theory underlying Cox regression is complex, but it does not make Cox regression less popular.
- Targeted learning relies on theory on nonparametric influence functions, which is likewise not known to many.
- But it need not stop one,

from using principled analyses that target the treatment effect of interest, while acknowledging 'all' uncertainties.

See Targeted Learning Webinar series on YouTube.

tinyurl.com/youtube-PDS

www.youtube.com/channel/UC6Cg1XjzX-MlyxKIWfHezFQ

KEY REFERENCES

- Bartlett, J. W. (2018). Covariate adjustment and estimation of mean response in randomised trials.
 Pharmaceutical statistics, 17(5), 648-666.
- Moore, K. L., & van der Laan, M. J. (2009). Covariate adjustment in randomized trials with binary outcomes: targeted maximum likelihood estimation. Statistics in medicine, 28(1), 39-64.
- Rosenblum, M., & Van Der Laan, M. J. (2009). Using regression models to analyze randomized trials: Asymptotically valid hypothesis tests despite incorrectly specified models. Biometrics, 65(3), 937-945.
- Steingrimsson, J. A., Hanley, D. F., & Rosenblum, M. (2017). Improving precision by adjusting for prognostic baseline variables in randomized trials with binary outcomes, without regression model assumptions. Contemporary clinical trials, 54, 18-24.
- Tsiatis, A. A., Davidian, M., Zhang, M., & Lu, X. (2008). Covariate adjustment for two?sample treatment comparisons in randomized clinical trials: a principled yet flexible approach. Statistics in medicine, 27(23), 4658-4677.
- Vermeulen, K., Thas, O., & Vansteelandt, S. (2015). Increasing the power of the Mann-Whitney test in randomized experiments through flexible covariate adjustment. Statistics in medicine, 34(6), 1012-1030.